弱监督的语义细分(WSSS)旨在仅使用用于训练的图像级标签来产生像素类预测。为此,以前的方法采用了通用管道:它们从类激活图(CAM)生成伪口罩,并使用此类掩码来监督分割网络。但是,由于凸轮的局部属性,即它们倾向于仅专注于小的判别对象零件,因此涵盖涵盖整个物体的全部范围的全面伪面罩是一项挑战。在本文中,我们将CAM的局部性与卷积神经网络(CNNS)的质地偏见特性相关联。因此,我们建议利用形状信息来补充质地偏见的CNN特征,从而鼓励掩模预测不仅是全面的,而且还与物体边界相交。我们通过一种新颖的改进方法进一步完善了在线方式的预测,该方法同时考虑了类和颜色亲和力,以生成可靠的伪口罩以监督模型。重要的是,我们的模型是在单阶段框架内进行端到端训练的,因此在培训成本方面有效。通过对Pascal VOC 2012的广泛实验,我们验证了方法在产生精确和形状对准的分割结果方面的有效性。具体而言,我们的模型超过了现有的最新单阶段方法。此外,当在没有铃铛和哨声的简单两阶段管道中采用时,它还在多阶段方法上实现了新的最新性能。
translated by 谷歌翻译
For ensuring vehicle safety, the impact performance of wheels during wheel development must be ensured through a wheel impact test. However, manufacturing and testing a real wheel requires a significant time and money because developing an optimal wheel design requires numerous iterative processes to modify the wheel design and verify the safety performance. Accordingly, wheel impact tests have been replaced by computer simulations such as finite element analysis (FEA); however, it still incurs high computational costs for modeling and analysis, and requires FEA experts. In this study, we present an aluminum road wheel impact performance prediction model based on deep learning that replaces computationally expensive and time-consuming 3D FEA. For this purpose, 2D disk-view wheel image data, 3D wheel voxel data, and barrier mass values used for the wheel impact test were utilized as the inputs to predict the magnitude of the maximum von Mises stress, corresponding location, and the stress distribution of the 2D disk-view. The input data were first compressed into a latent space with a 3D convolutional variational autoencoder (cVAE) and 2D convolutional autoencoder (cAE). Subsequently, the fully connected layers were used to predict the impact performance, and a decoder was used to predict the stress distribution heatmap of the 2D disk-view. The proposed model can replace the impact test in the early wheel-development stage by predicting the impact performance in real-time and can be used without domain knowledge. The time required for the wheel development process can be reduced by using this mechanism.
translated by 谷歌翻译
Systemic Lupus红斑(SLE)是一种罕见的自身免疫疾病,其特征是令人无法预测的耀斑和缓解的速度,具有不同的表现形式。狼疮性肾炎,SLE用于器官损伤和死亡率的主要疾病表现之一,是卢布斯分类标准的关键组成部分。因此,准确地鉴定电子健康记录(EHRS)中的狼疮性肾炎将使大型队列观察研究和临床试验有益于患者人口的表征对于招聘,研究设计和分析至关重要。可以通过程序代码和结构化数据来认可狼疮肾炎,例如实验室测试。然而,记录狼疮肾炎的其他关键信息,例如来自肾脏活检和先前的医学史叙事的组织学报告,需要复杂的文本处理,以从病理报告和临床笔记中挖掘信息。在这项研究中,我们开发了使用EHR数据识别鉴定狼疮肾炎的血管肾炎,而不使用自然语言处理(NLP)。我们开发了四种算法:仅使用结构化数据(基线算法)和使用不同NLP模型的三种算法的规则的算法。这三种NLP模型基于正则化逻辑回归,并使用不同的特征集,包括积极提及概念独特标识符(Cue),耐备的外观数量,以及三个部件的混合物。基线算法和最佳执行的NLP算法在Vanderbilt University Center(VUMC)的数据集上验证了外部验证。我们最佳地执行来自结构化数据,正则表达式概念和映射的特征的NLP模型,与基线狼疮性肾炎算法相比,在NMEDW(0.41 VS 0.79)和VUMC(0.62 VS 0.96)数据集中有所改善。
translated by 谷歌翻译